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Abstract
Tyt
We study the asymptotic performance of linear predictors of continuous-

time stationary processes from observations at n sampling instants on a fixed
observation interval. he considér both optimal and simpler choices of predict-
or coefficients; uniform sampling, as well as ngngniform sampling tailored to
the statistics of the process under prediction. (ﬁe.concentrate on stationary
processes with rational spectral densities and obtain the asymptotic perform-
ance for cases with no and with one quadratic-mean derivative. The analytical
results are supplemented by numerical examples depicting small and large sample

size performance.
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I. INTRODUCTION

A continuous-time stationary process is to be predicted linearly from ob-
servations at a finite number of sampling instants from a fixed observation
interval. What is the best location of the sampling points, for fixed sample
size or asymptotically as the sample size tends to infinity? At how many
points should the process be sampled for the predictor to achieve a specified
mean square prediction error? If the process is sampled uniformly, what should
the sampling rate be for a desirable predictor performance, measured in mean
square error? These questions are answered by studying the performance of
discrete-time linear predictors as the sample size tends to infinity.

We consider uniform sampling as well as nonuniform sampling, e.g. at fixed
quantiles of a probability density over the observation interval. We are
strongly interested in the performance of uniform sampling, but we would also
like to know whether appropriately chosen nonuniform sampling may result in ap-
preciable improvement of performance. We consider optimal and certain suboptimal
linear predictors. The optimal predictors require the inversion of an nxn
matrix for each sample size n. The suboptimal predictors we use, require the
solution of an integral equation, but then the choice of predictor coefficients
for each sample size is very simple.

We concentrate on stationary processes with rational spectral density.

When the process has no quadratic-mean derivative, both the optimal and sub-

. -2 .
optimal predictors have the same rate n and the same asymptotic constant,

which depends on the sampling design. This allows us to check whether the

asymptotically optimal sampling design is uniform or nonuniform, and, in the 0
. , a
latter case, to compare its performance with that of uniform sampling. The
PR S——
————————
small sample performance of uniform versus nonuniform sampling, and of optimal
. i PRPCE n T ‘
versus suboptimal predictors i< illustrated by specific numerical examples.
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We next consider the case where the process has exactly one quadratic-mean ::ffq
l'. \
N
derivative. When the suboptimal predictor is used, uniform sampling has rate :iufb

n-1 while nonuniform sampling schemes can be designed with rate n—a. This
striking discrepancy in the rate of convergence is due to the presence of de-
rivatives of delta functions in the continuous-time linear predictor filter.

The asymptotic performance of the optimal predictor is an open question at

present. In this case, the comparison in small sample performance and in asymp-
totics of optimal versus suboptimal predictors is done via specific numerical fixé;
examples. .1 ‘]

In the context of regression problems, sampling designs were considered by ;5.;f
Sacks and Ylvisaker [3]-[5]. Sampling designs for suboptimal integral estimators
and detectors were considered by Schoenfelder [6] and by Cambanis and Masry [1],
respectively. The current paper considers sampling designs in the context of
prediction of stationary processes and provides new analytical results, cxtending
the earlier works [1],[6], for processes with one quadratic-mean derivative.

The organization of the paper is as follows. The formulation of the problem

is given in Section II. Theoretical and numerical results for processes having

no quadratic-mean derivative are presented in subsection A of Section II. The
corresponding results for processes with one quadratic-mean derivative are given
in subsection B of Section II. The proof of the asymptotic performance for pro-

cesses with one quadratic-mean derivative is delegated to the Appendix.




I1. PERFORMANCE OF DISCRETE-TIME PREDICTORS

We consider a stationary process X = {X(t), ~©<t <} with mean zero and
covariance function R(t). We want to predict linearly the value of the process

at time s>T from n observations of the process taken at the sampling instants

n
D = {tk}k=1

The linear predictor XD(s) has the form

n
= = '
XD(S) 2 CD,kx(tk) £D§D (2.1)
k=1
' [} s t -
where the row vectors <p and §D are defined by <n (CD,l""’ CD,n) and

56 = (X(;P,..., X(tn)). Our goal is to choose the n sampling points D and the

predictor coefficients ¢ so that the resulting mean-square prediction error

D

e2(s) = E[X(s) - X ()% = R(0) - 2¢} R (s) + ¢/ Rc

should be as small as possible for fixed sample size n or asymptotically as n
tends to infinity. Here Bﬁ(s) is the row vector (R(s-—tl),..., R(s-—tn)) and

)]

n

RD is the covariance matrix [R(t } .
j,k=1

-t
k]
For a specified set of n sampling points D, a natural choice of predictor

coefficients ¢ is the optimal coefficients ¢ = Bﬁ(s)Rgl, for which the

D
linear predictor
R (s) = RUR X (2.2)
D 3D RD ~D )
is the projectionof X(s) on the data space generated by {X(i), Te D}, and the

. ) 2 . .
corresponding minimum mean-square prediction error ED(s) is given by

from the interval I = [-T,T]}, namely from the observations {x(tk)}2=l'
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3 e2(s) = EIX*()) - B ()] = R(D) - RI(SIRS'R (5. (2.3)
= D 3Ry &y . :
r 7
For a specified n point sampling design D, finding the optimal coefficients in- :fﬂf;
volves inverting an nxn covariance matrix, and the weight cD X for the kth ob- - _‘}j
’ . e
L
servation X(tk) depends on all sampling points {tk}2=l = D. Simpler, non- R

optimal, weights are naturally suggested by the form of the continuous data ) o

-

’
'.‘ [ I
U IRy ORI B |

predictor whenever it is known, and we discuss this next.

When the entire continuous record {X(1), Te I=[-T,T)} is available, we

A
denote the optimal linear mean-square error predictor of X(s) by XI(S) and

"3

its minimum mean-square error by

3

Py

£
B
-

l C%(s) = E[X(s) —ﬁl(s)]2 R(0) - E[QI(S)X(S)]. (2.4)

For any discrete-time predictor XD(s) (with or without optimal coefficients

. E’D) we have

eb(s) = EIX(s) ~X ()17 = E([X(9) - R, ()] - (R () - X ()]}

ei(s) + B} (o) - XD(S)]2 (2.5)

A

where the cross term vanishes since the error X(s)-—XI(s) is orthogonal to ]
A

the space generated by the continuous data {X(:), T« Il to which both XI(S) _11;%

and KD(S) bslong. Thus the excess error of any discrete-time predictor is

wiven by
'.: - 1
g ‘2(‘) - "2(‘) = B[R () - X (‘;)]2 (2.06)
= ey s e, (s X G p* 2.
<
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and in particular the excess error of the optimal-coefficients discrete-time

predictor (2.2) is

e2(s) = e2(s) = ElRo(e)] - EIRD(s)] (2.7)

‘«"TEEETW S P X F_T. T .mmmm

by the projection theorem.
Since the excess mean-square error (2.6) of every discrete-time predictor

is measured by how well the discrete-time predictor approximates the continuous
time predictor in mean-square, simple nonoptimal-coefficients discrete-time pre-
dictors can be obtained from the form of the continuous-time predictor whenever
the latter is known explicitly in the time domain. In particular when the pro-
cess X has a rational spectral density and has precisely k mean-square deriva-
tives, as we assume henceforth, then the optimal linear continuous-time predict-

or has the form [2]

5 &) (4 T
; X (s) = ¥ {a,x 1) +b x3 (M} + [e(x(1)dr (2.8)
- I j=0 i 3 -T
. ]
I where the coefficients {aj}, {bj} and the filter c(t) all depend on the time

s at which the process is predicted; and when we wish to emphasize this depend-

ence we will write aj(s), hj(s), c(t,s). The values of {ai}, {bj} and c(t) are

,i.

T

R(s-t) = [ h(DR(1 - t)dT, |t]=T, (2.9)
. ~T
i with
: S TNG) ()

h(t) = }f(-l)»‘{aid Vst + b, -1 + c(o). (2.10)
; i=0 : |
r

obtained as the solutions of the linear integral equation
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The form (2.8) for the optimal continuous-time predictor suggests generating

nonoptimal-coefficients discrete-time predictors as follows. First the endpoints
+T should be included in the sampling design: -T = l:1 < t2<. . .<tn_1 < tn =T. Then to

obtain the discrete-data predictor XD(s) from the continuous-data predictor

ﬁl(s), in the expression (2.8) of ﬁl(s):

(i) replace each quadratic mean derivative X(J)(ii), j=1,..., k, by its
natural approximation by means of the samples, e.g. replace X(l)(T) by
[X(T) -X(t_ )]/(T-t_ ), and
n-1 n-1

(11) replace the integral IETC(T)X(T)dT by a Riemann-type approximation in
terms of its samples {c(tk)X(tk)}E=1.
The appropriate quadrature rule for the approximation of the integral depends
on the number k of quadratic-mean derivatives of the process and will be speci-
fied in the sequel.

Here, fur simplicity, only the cases k=0 and k=1 will be discussed in

detail as thev bring out all the salient features of the problem at hand.

Al A danes -
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A. No Quadratic-mean Derivatives (k= 0)

I In this case the optimal continuous data predictor has the form

RN T

: R () = aX(-T) + b X(D) + [ c(DX(1)dT (2.11)

. -T

where the constants a,b and the filter c¢(T) are the solution of (2.9) with k=0.

A.l1. Optimal-Coefficients Predictors :?ﬁ*u

A .
l When the optimal—coefficientsdiscrete—datapredictorXD(s)of(2.2) isused, the excess =9

mean-square error (2.7) can be written in the form

J en(s) = e2(s) = ER () - R (017 = |£_- p 1|7,

where f (t), |t] <T, is the function in the reproducing kernel Hilbert space
s
2
l of the covariance R, restricted to [-T,T]”, which corresponds to the random

variable Qr(s):

: T
) £(0) = E[QI(S)X(c)] = aR(t+T) +bR(t -T) + [ c(DK(t-1)drT,
' -T
E and PD denotes the projection on the space generated bv {R(._tk)}z—l' Thus ?:
. SO
; the results in Sacks and Ylvisaker [3 , Theorem 3.1 and Remark 3.3] are applic~ Eﬂ"i
V - . , o : . . 4
able.  Specifically if {Dn}n_2 is a regular sequence of sampling designs ]
cener . . 3 . , _r B . >, =( n
renerated bv a continuous, positive density p(t) on [-T,T], i.e., Dn ‘tn,k k=1 j

with t | satisfying

. -
a.k k-1 IS
f p(t)dt = o1 k=1,..., n, nx2, (2.1 S
1 e

.=t
L5, ZE T 1 .".
." . ',".
A dmmt e o
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. then the excess error (2.7) of the discrete-time predictor (2.2) satisfies

" o

- 2.2 2

n’le? (s) -e2(s)] » L [ SLa8) 4, (2.13)
- D 1 12 2

o n -T p (t)

i as the sample size n+®, where r = R'(0-) - R'(0% >0. It is seen from (2.13)

N that the excess error decreases precisely at the rate l/n2 and that the asymp- )

totic constant depends on the correlation function R(t) of the process X via
the jump r of its derivative at zero as well as via the filter c(t,s) -cf. the
integral equation (2.9). The result of (2.13) is valid for any continuous and
. positive density p(t) on [-T,T]. 1In particular for the uniform density

. 1 . :
p(t) = 2T l[-T,T](t)’ the sampling instants are equally spaced:

II and (2.13) provides a precise result on the magnitude of the excess error: I_

. 2T
- nzlgg@)— f?(s)] > E%* f cz(t,s)dt.

The case of equallv-spaced sampling instants is not the best possible, however.

If the sampling densitv p(t) is chosen so as to minimize the asvmptotic con- ’ -

!i stant in (2.13), i.ce. (bv Holder's inequality), E .”;

‘ oA
p () = et [ T , el <o, (2.14)

e, | ey

i .oochtain from (2.12) a sequence {Dg} of sampling designs which is asymptotically
fr v rimil in the sense that [ 3]
*

IR . e - .
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ED*(S) - Ei(s)
n

> 1 as n * w

infeg(s) - ei(s)

where the infimum is taken over all sampling designs of size n. In this case,
the excess mean-square error for the optimal-coeflficients discrete-time predictor
satisfies

. T 2
nzlegg(s) O {_jT le(e,s) | Paey?. (2.15)

It is seen from (2.14) that the sampling density ps(t) of the asymptotically
optimal scquence of designs depends explicitly on the filter c¢(t,s) and thus on
the correlation function R(t) of the process X via (2.9). This is, of course,
in sharp contrast to equally-spaced sampling. Furthermore, in general, the
optimal sampling density ps(t) depends on the time s at which prediction is
required. As will be seen from the example at the end of this section, it could
happen that the filter function c¢(t,s) depends on the prediction time s in a
tactorable form: c(t,s) = cl(t)cz(s), in which case the optimal sampling den-
Sitv ps(t) of (2.14) no longer depends on the prediction time s: ps(t)==p(t) -

2 desirable feature. In the general case one can derive a sampling density

~(1Y, independent of s, by averaging the asvmptotic constant in (2.13) with a
wedght runction w(s) reflecting the prediction requirement as one moves
rwtv otrom the obhservation interval [-T,T]:
r b 2 dt
. f (5 ¢ (t,s)w(s)ds)——-,
T-ToT p(t)
i hen cheesing the sampling density p(t) which minimizes this averaged con-
et The vesulting sampling densitv p(r) is proportional to
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(J Er.srws)ds)
T

and thus does not depend on s, with corresponding asymptotic constant for the

excess prediction error

75_T cz(th)

o0 4 dt
12-T (ITcz(t,u)w(u)du)?

B

which does, of course, depend on s.

A.2. Nonoptimal Predictors With Median Sampling

In this subsection we consider the performance of predictors XD(s) whose
coefficients < are not optimal. As indicated earlier, such nonoptimal-coeffi-
cientspredictorscan}nzobtainedln/adiscrete—timeapproximationcﬂ’theoptimalcontinu—
ous~time predictor which is now given by (2.11). A discrete-time approximation
to (2.11) is of the form

1 n-2 c(t k)

—_ — P n—.._.
Xy (8) = agX(=T) + bX(T) + 75 Z NI X(e ) (2.16)
n k=1 n,k

for n2 2, where the coefficients ao,bO and the function c(t) are those of the
optimal continuous-time predictor. Here the sampling instants are

p = {-T,t I ¢ T} where the sampling points {tn TR t _2} are

’
n,n-2 , 1 n,n

the medians of a regular sequence of decsigns generated by a positive and con-

t inuous sampling density p(t) on [-r,T1, i.e., {t ,}?_ satisfyv
n,i i=1
t .
b 2i-1
= - i=1,... -2, = 3. 2.17
{T p(t)dt 202y i=1, , n n-3 (2.17)

: . : n-2 ;
Note that in this :ase the sampling polnts Jtn i}'-l used for the discrete ap-
, =

. T . .
proximation of the integral f Tc(r)X(T)dr are all in the ‘nrovtor of [-T,T].
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11
For example when p(t) = —L-l (t) we have
2T " [-T,T]
2i-~n+l
tn,i = T—B—:Z—-' i=1,..., n-2, n23,
The mean-square prediction error is given by
2 2
ey (s) = E[X(s) - X (s)]
n n
= R(O)[1+a>+b2) - 2a R(s+T) - 2b_ R(s-T) + 2a_b R(2T)
0 0 0 0 00
3 , B3 ~2 c(tn k)
- — MLX_ - - - -
-2 kz p(e R Tt i) TR ) DoR(T -t )]
L n-2 n-2 c(t ) C(t )
+ R(t .-t ). (2.18)

The excess error of the discrete-time predictor (2.16) is then precisely the error

in the integral approximation, i.e.,

’ 9 T n-2 c(t k) 5
bnn(s) -~ e1(s) = E[_ch(t)X(t)dt - 21 ———!———p(t D X(t ‘k)]

tor n>3. From the result of Schoenfelder [ 6] (see also Cambanis and Masry [1])

h we have
i

, , T 2
nz[elz) (s) - .f(s)) - 1% i ‘—é—tﬁ)— dt (2.19)
n =T p(t)

a5 n > o, where r = R'(0-) - R'(0+) > 0. The rectangular rule of integral approxi-
mat ion was used in (2.16) because among all Newton-Cotes formulac of order one,

it results in the smallest value of the asymptotic constant (2.19) as was
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It is seen from (2.19) that the nonoptimal-coefficients predictors (2.16)

have the same asymptotic performance as the optimal-coefficients predictors (2.2).

All comments made earlier about asymptotically optimal sequences of designs and :k;
optimal sampling densities p(t) are applicable here verbatim. For a small sample 25;
size n one expects the optimal-coefficients discrete-time predictor (2.2) to have i 5%;
a smaller excess error than that of the nonoptimal-coefficients predictor (2.16). -i;i
Concerning the ease of implementation, the optimal-coefficients predictors (2.2) ;;
require the inversion of the covariance matrices [R(tn,k--tn’j)]:,j=1 for each i‘,
sample size n, which is not especially difficult to accomplish on a computer.

On the other hand, the nonoptimal-coefficients predictors (2.16) require the sol-

ution of the prediction integral equation (2.9) with k=0 for the determination ‘;;i

of ao,bO and c(t) in (2.16), which may be a more complex task, but is done once o

regardless of the sample size n.

A.3 Example

We now illustrate by an example the performance of the optimal-coefficients
and nonoptimal-coefficients predictors in conjunction with uniform or asymptot- if{t
ically optimal sampling schemes. We focus our attention on the performance for l;;,
finite sample size n,as the asymptotic performance is clear from (2.13) and ‘
{}: (2.19). TInparticular we obtain the improvement in performance that the asymp-
totically optimal sampling (with density p(t) of (2.14)) provides over the com- [:__
:;- nmonly used uniform sampling. i:;-

- We assume the process X has spectral density

R
3 2,,2 E__
. L 287 o+ o7
AR e . 2 .22 o
- T +H3T) (87427 S
r‘: ‘T‘
- and correlat ion function ;_\_
s
.
r.
e L A e e L R e
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R(t) = e_BM[l + BL“—Z'—%lltl] (2.20)
a +R

where a,B> 0. Note that R(0) =1 and that X has no quadratic-mean derivatives.
When a =R, X is first-order Markov so that the optimal continuous-time predictor

of X(s), s> T, from the observations {X(t1), |1| <T} uses only the data point

X(T), namely

e-B(s—T)

\

v

IR P PR A
. .

A
X (s) = X(T),
and the question of sampling designs does not arise. Hence we shall assume
t#8 in the following.

The optimal continuous~time predictor is of the form (2.11) with ao,bo, .E«,
and c(t) being the solution of the integral equation (2.9) with k=0. They

can be found by the method in Rozanov [ 2] and, after lengthy computationms,

we have
2 D o202 -B(s-
ay(s) ='<T4‘Z‘T‘>"‘"8 y(s - Tye BT (2.21a)
(D, -B(s-T)
bO(s) = {1 + Eij("T')_(" -B)(s-T)}e R (2.21b)
L d (6 I
. 2 2.2% ~B(s-T
ety = = =R iz(fy(s-T)e B(s-T) = dz(t)cz(s), (2.21c) !Z;:
where
40 = ()M (D gymema (D) (2.21d)
INERNE (o )P ED Ly (ed Ty (2.210)

- R S . PRI TN \ T e M e e .
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N 2
The mean-square prediction error €I(s) for the optimal continuous-time predictor,

given by (2.4), can be computed explicitly to yield

ei(s) = 1-ag()R(s+T) - b (8IR(s=T) - c,(s)A(s) (2.22a)
where
A(s) = 2e—Bs{(a+-B)eaT[(l-FBs-Fa%E)sinh(a-FB)T — BT cosh(a+ R)T)
(2.22b)
- (G—B)e_aT[ (1 +Bs —a{;—B‘)Sinh((z -B)T + BT cosh(x -E)T}},
and
/2 B2
B = 85 . (2.22¢)
o +B

For the discrete-time predictor (2.2) with optimal coefficients and sample size

2
D (s) is given by (2.3), whereas for the nonoptimal-co-

n
efficients discrete-time predictor (2.16) with sample size n the mean-square error

n, the mean-square error €

vé (s) is given by (2.18).
n
In the following numerical results the observation interval is set to

[-1,1], i.e. T=1, and the parameter R of the correlation function R(t) is
set to B=1. After a preliminary investigation, the value of the parameter

+ in the correlation function R(t) was set to =15, The reasons for this
choice are as follows. When =1 we have a first-order Markov process X for
which the continuous-time predictor with optimal coefficient uses only the
endpoint  X(+1) so that, in this case, the question of sampling designs for
prediction is not interesting. Thus we are interested in choosing «t#1. For
<1+ 1 numerical computations showed that the mean-square prediction errors,

P 2
[(5) and t

n (s), for the ontimal continuous-time predictor and respectively
)

for the discrete-time predictor with optimal coefficients using only X(+1),

Sk 10 A in S See o e
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are essentially identical so that the sampling design problem is asain of no

interest. For a>1 the numerical results showed that the difference between

2 2
EI(B) and €5 (s) becomes more pronounced as 1 increases. For example for
2
2 2
n=5,2 we have EI(Z) = .44 and ED (2) = .48 so that the fractional error for

2
n=2 is already too small to exhibit the performance of the design for dif-

ferent sample sizes n. For a =10 the corresponding numbers are 65(2) =.38
and eg (2) = .458. 1t is thus seen that we need to choose 2 much larger than
2

B=1 in order to deviate sufficiently from the Gauss-Markov case. We have

chosen =15 in order for the sampling design problem to be of interest.

A.3.1. Optimal-Coefficients Predictors

Figure 1 compares the error Ei(s) of the continuous-time predictor with
the error Egés) of the diserete~time predictor with optimal coefficients and
equally spaced samples, for prediction lags s-Te [0,3]. It is seen that
for a sample size n=10, the two mean-square errors are very close. Note
that for very small and for very large prediction lags, the performance of
the two predictors should be very close even when the sample size is smal)
(n=2) as expected intuitively, since for zero lag, the prediction error in
both cases is zero, and as the lag tends to infinity, the prediction error
approaches R(0) = 1.

Figure 2 provides a similar comparison when the discrete-time predictor

with optimal coefficients uses the asymptotically optimal sampling instants

(a regular sequence (2.12) generated by the sampling densitv p(t) of (2.14)).

While in general p(t) of (2.1 © depends on the prediction time s, leading to
different sampling instants for different values of s (cf. (2.12)), it is

seen from the dependence of ¢(t) on s in (2.21¢) that for this example p(t)

'«
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is proportional to ;;a;:
p(e) ~ |+ 823D (o2 DBy o, (2.23) 2

o

SRR

which is independent of s, so that the sampling instants {tn,k}§=l generated :;:ﬁ
by p(t) via (2.12) are the same for all prediction times s>T. It is seen . .i{li
from Figure 2 that with only n=3 samples the performance of the discrete- lgi?
time predictor is already very close to that of the continuous-time predictor. :.53
The improvement that the asymptotically optimal sampling provides over uniform !1'11

sampling is 1llustrated in Figure 3, where the fractional error

(s)

n

(s)

€

Yi(S) =
€

[l 1w S ]

is plotted as a function of the sample size n, for both uniform and asymp-
totically optimal sampling. The dramatic improvement provided by asymptotic-
ally optimal sampling is readily apparent for moderate values of the prediction

lag s-T. For example for lag s-T=1, using n=3 samples, we have

171 , for uniform sampling,

2
Y3(l) =
.076 , for asymptotically optimal sampling,

in improvement factor of 2.25, and for n=95 samples,

N

Y (1) =

.087 , for uniform sampling,
s -

.0026 , for asvmptotically oprimal sampling,

an improvement factor of 33.4.




& 2t

A.3.2. Nonoptimal-Coefficients Predictors

For the discrete-time predictor (2.16) which uses nonoptimal coefficients
and whcse mean-square prediction error eg (s) is given by (2.18) it was found
that its performance with unZform samplin; is exceptionally bad. Specifically
even for n=10 samples, the error exceeds R(0) =1 for all lags s-Te¢ (.1,3], and
equals 4.3 for lag s-T=1. Matters are much worse for n=2 samples where the
error equals 23.06 for lag s-T=1. This behavior can be explained as follows:
The excess error for the nonoptimal-coefficients predictor (2.16) is preciselv due to the
approximation of the integral fch(t)X(t)dt by the sum in (2.16). Now for
the selected values of a and B, c(t) of (2.21c) has most of itsmass concentrated
near the right end point t=T=1. When uniform sampling points are used, only
for very large values of n there will be enough samples near the right end
point of the interval [-T,T] to provide a reasonable approximation for the
integral. This problem does not arise with predictors using uniform sampling
and optimal coefficients since in this case the coefficients {c k} of the

9’

predictor are the best possible and each Kk depends on ui/ sampling points
’

{tn,k} - indeed even for n=2 samples the performance is quite good as seen
from Figure 1.

When asymptotically optimal sampling is used (c¢f. (2.23) and (2.17)) the
performance of the nonoptimal-coefficients predictor is quite reasonable. This is
because the mass of p(t) - which is again independent of the prediction time s - is
concentrated near the right end point of the interval [-T,T], just like c(t,s),

and thus the sampling instants {t }E;i generated by p(t) via (2.17) are also

n,k

clustered around the end point T. Figure 4 provides a comparison with the

performance ot the continuous-time predictor as a function of prediction lag

— -
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s -T. Note that when n=5 samples are used, the performance of the discrete
and continuous time predictors is very close. The fractional error is plotted
in Figure 5 as a function of the sample size n for various values of the pre-
diction lag s-T.

If we compare the performance of the optimal-coefficients and nonoptimal-
coefficients predictors when both use the (asymptotically optimal) sampling
density p(t) of (2.23), we find that the optimal-coefficients predictor is

superior. For example for lag s-T =1 we have

n | 2 3 5 8
Optimal predictor .25 .016 .0026 . 00066

2
Y, (1)
Nonoptimal predictor|63.6 .28 .0163  .0026

Thus the optimal -coefficients predictor requires considerably fewer samples to

achieve a prescribed level of error.
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B. Exactly One Quadratic-Mean Derivative (k=1)
In this case the optimal continuous-data predictor has the form
T
R (s) = agX(-1) + b X(T) + a X' (=T) + b X' (1) + [ c(e)x(t)de (2.25)

-T

where a_,b, and c(t) are the solutions of the integral equation (2.9) with k=1,

and thus depend on the time s of prediction, which is suppressed.

B.1 Optimal-Coefficients Predictors

When the optimal-coefficients discrete-data predictor is used, the excess mean-square
error can be written in the form ||fs-PDfSl]2, as when k=0, but now the func-
tion f_(t), |t] ST, is of the form

T

F(8) = agR(t+T) +b R(t -T) ~a R'(t+T) - b, R" (¢t - T) +_jT c(T)R(t - T)dT
and the results of Sacks and Ylvisaker [ 3] are no longer applicable because
of the presence of derivatives of the covariance. Thus no precise rates of con-
vergence to zero of the excess error are available, and the subsequent results on non-
optimal-coefficients in sussection B.2 provide upper bounds for the optimal~coeffi-

cients predictor. Some conjectures are also offered in subsection B.3.
B.2 Nonoptimal-Coefficients Predictors

T
Usiny the trapezoidal rule in approximating the integral f_Tc(t)X(t)dt= ch

in (2.25) by

n-1 c(t ) c(t )
1= ‘:- ) %{ —(T"J-}-‘-)« X(e )+ "(T”Lk-“—)— Xt 00
n k=1 P n,k ns P n,k+1 My

we obtain a simple nonoptimal-coefficients discrete-data predictor of the form
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X(tn 2)—x(-T) x(T)-x(z;n n_1)
Xp (8) = apX(=T) + bX(T) + a)— 5 MLS g
n n,2 n,n-1
(2.26)
-1 c(t )
Ll e(-Dyemy 4 n,k 1 ()
R pE D D a5 X P 2 e M)

where ﬁ%g is a regular sequence of designs generated bv the cont inuous and positive

Y i . “T=t_ <t <...< <t =T
sampling density p(t), 1i.e. the sampling points inDrl are -T tn’1 Ln,2 tn,n—l tn,n T
and are specified by (2.12). Denoting by AsT n’AT n the errors in the approxi-
] b}
mation of the quadratic-mean derivatives, i.e. A-T n==X'(—T)-—[X(tn 2)--X(-T)]/(tn 2+’D, ;5;}'
’ , k] B'
AT’n-=Xv(T)"[X(T)-X(tn,n_l)]/(T..tn’n_l), we can express as follows the excess :-fkj
mean square error in view of (2.6), (2.25) and (2.26), RS
2 2,0 2,2 2,2 E:
eDn(s) - (I(s) = alE(A—T,n) + blE(AT,n) ﬂ{ff1
]
+ 2alblE(A-T,nAT,n)
(2.27)
+2B{(a A+ blAT’n)(ch -1}
2
-1 .
+ E(fcXx »
The asvmptotic performance of each term is derived in the Appendix, assuming p FQ‘Zj
L
and efp are twice continuously differentiable, and this leads to F _!
2 2 1 .
e, (s) - EI(s) =5 Cl\s)[l + 0(1)) }
n -.
1
+ ’§C7(S)[1 + o(1)]
" (2.28)
Lo I+ o]
* n3 3

+

%ﬁa(s)[] + oD ],

n
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as n*o, where each line in (2.28) shows the asymptotic performance of the
corresponding line in (2.27), and the constants Ci(s) are specified in the ap-
-1
pendix. Thus the overall slow rate n is due to the slow convergence of the
quadratic-mean derivative approximation, and we have (cf. (A.5))
2 2
1 a(s) b (s)

2 2
nlep (9 - ey > 66 = oy +om

} (2.29)

3) (

where p is the jump of the third derivative of Rat zero: p=R"(0+) - R3)

(U-y >0. 1lnpar-

-1 . .
t icular, the slowraten = is the maximum possible when uniform sampling is emploved.

It is clear from (2.27) and (2.28) that the integral approximation has a
-4
much faster rate of convergence n . This substantial loss of rate convergence
can be averted by replacing in each n point sampling design Dn the points tn 5

4
by (tn +T) -T and T-(T-t )4 respectively. The resulting

and tn .2 n,n-1

,n-1

modified regular sequence of designs {D;} (which can no longer be uniform) has

excess error whose term by term asymptotic performance is described by

egam - €2(s) = LN+ o))

n

+ 301+ o))

n (2.30)

+ ;]%Cé(s)[l + o(1)]

4-w%C,(s)[l + o(1)].

94
n
In this case the rate of convergence is n = and, as n- o,
4.2 2 e 5
n [“D;(“) - (8] > Cis) + ¢, (s) (2.31)

A
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where (cf. (A.8), (A.18)) 5 2
1 al(s) bl(S)

Ccl(s) = Zpf + .

1 I en
T 2

c,(s) = —7%,9 / 5—2~5-’—S~)~ dt + C(s)
-T p ()

and C(s) is given in (A.19) and depends on s only through c(+ T,s) and c¢'(+T,s),
and on p onlv through the boundary values p(+ T), p'(+T). Because of the depend-
cnce of the asymptotic constant in (2.31) on the values of p and p' at the end-
points +T, its minimization with respect to p(t) is messy and perhaps not feasi-
ble in view of the continuity requirements on p. On the other hand, the part of
the asymptotic constant which depends on p(t), |t|<T, i.e. fczp_a, is minimized
when p(t) is proportional to 'c(t,s)|2/5.

A further small improvement can be achieved by bringing the modified

sampling points even slightly closer to the endpoints so as to cancel asymp-

tatically the effect of the approximation of the quadratic-mean derivatives.

tor instance if the modified sampling points are chosen by t; 5= (tn 2+“Tf+£-—T,
b 9
b4t
t' =T-(T-t ) E, £>0, then the resulting modified regular sequence of
n,n-1 n,n-1

designs {D;] has, of course, the same rate but smaller asymptotic constant:

pf el (s) - 2]+ ¢ (s). (2.32)

D
n

b.4 Pxample

Here the process X has the spectral density
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and correlation function
R(t) = e_6‘t|[1+8|tl +

where a,8 > 0.
derivative.

mal continuous-time predictor of X(s), s>
uses only the data points X(T) and X'(T).

part of the observation, the case a=8 is

P T T T ———

8% w’-8%) 2

]
3a +82

Note that R(0) =1 and that X has precisely onc quadratic-mean

When a =8, the process X is second-order Markov for which the opti-

T, from the observation {X(t), |t]=7"
Since the derivative X'(T) is not

still of some interest. However, we

shall consider the case a#8 in order to exhibit the performance of sampling

designs which provide data points inside the interval [-T,T].

The coefficients ays bo, al,

predictor (2.25) can be obrained as follows.

1717,

it can be seen that c(t) is of the form c(t) =B e

bl’ and c(t) in the optimal continuous-time

From Rozanov [ 2] or Yaglom

nt ¢34
+ B, e

1 2 subst i-

and

tuting h(t) of (2.10) with k=1 in the integral equation (2,9}, carrying out

the intepration, and equating the coefficients of t e

sides of (2.9) leads to a svstem of six equations in the unknowns aOJ%YalJi’Blﬁ”

£ty _9.1,2, on both

(thcgeneralexprossionsforzﬁfb,given in Rozanov [2,p.137] are incorrect; hence the
i

substitution approach taken here).

After lengthy computations we find

ag(s) = %(ftz S s m BB

01(5) = —ao(s)/(Bﬁ),

ho(s) =11+ 0(s-T) + [%“vgh_ig._ 52 _ 82] (S_T)Zh,—{"v(s—T) ’
c(t,s) = ?(12—:42)3 ;f;;:(s —TWZG-E(S_T) = x¥<[)“i(5)‘

i e T SRS W S DS S P S, . e e . - S T
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where dm and Gm are defined in (2.21d-e).
2
The mean square prediction error €I(S) for the optimal continuous-time pre-

dictor is g ven by (2.4) and can be computed explicitly to vield

Ei(s) = 1-aR(s+T) ~bR(s-T) +a R'(s+T) +b R (s - T) - ¢, (s)A(s)

where
A(s) = 26—85{(G‘FB)zeaT[(l'+E§&”*[TZ'F‘——%—EJB + [B'*é%%]s+-Bsz)sinh(8+w1)T
(B+a)
- T(B + 22 4+ 2Bs)cosh(B +x)T]
R+
- @-p% ™ +B—E;+ [T2+———~2———§]B + [B+£’;]s + BsZ) sinh(B - )T
(B-a)
TR + 22 4 9Bs)cosh(B-a)T])
B-o ’
5 B 8%
- 2 2
3"+ B
and
2 -Bt
R'(t) = - E—;£~—2-{(0t2+382) + B(az—Bz)t}, t=20.
3a” +R

For the discrete-time predictor (2.2) with optimal coefficients and sample size

2
i1, the mean-square error ‘D (s) is given by (2.3) whereas for the corresponding
n 5
rredictor (2.26) with nonoptimal coefficients the mean-square error e (s) is
n

siven by (2.27).
In the following numerical results the observation interval is set to
{-1,1], i.e., T=1, and the parameter & of the correlation function R(t) is
. 2 2
set to v =1. The behavior of K[(s) and CD (s) (with uniform sampling) as a

n
function of n, for a fixed s, was investigated numericallv: results show that
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2
as ® increases both EI(s) and EZ (s) decrease with eg (s) decreasing at a

D
n n
slower rate. For example for s=1.2 and a=.1, 1.2, 9.2 the values of Ei(s)
are .64, .276, .074, respectively, whereas the values of e; (s) are .797, .398,
2

.23 respectively. We have selected a moderate value of a=2.5.

B.3.1 Optimal-Coefficients Predictors

2
Figure 6 compares the error EI(s) of the continuous-time predictor with the

error eg (s) of the discrete-time predictor with optimal coefficients and
n

equally-spaced samples for prediction lags s-Te [0,3]. It is seen that eg (s)
approaches Ei(s), as n increases, rather slowly. In Figure 7 the fractiona?
error (cf. (2.24)) is plotted as a function of n with the lag s -T as parameter.
It is clear that the fractional error is fairly large even for a sample size
n=10.

In view of the analysis in Sections B.1l and B.2 we are led to believe that
D (s)-—ei(s) to zero is perhaps 1/n due to the

n
implicit aporoximation of the derivatives X'(+T) by linear combinations of

2
the rate of convergence of €

uniformly-spaced samples {X[ZT(k-—l)/(n-—l)-T]}2=l. It should be noted that
the approximation of the integral ITTc(t)X(t)dt by 22=lcn’kX[2T(k-1)/(n-—1)-—T]
has a rate of convergence of at least l/na.

The numerical results can shed light on the rate of convergence. Suppose

that the asvmptotic result is of the form

k, 2 2 . 5 o
n [ED (=) - FI(S)] + K(s) (2.133)
n
it n - tor some (unknown) constants k and K(s). Then as n > «,

av2(s) » K(s)ET(s) = a(s).
n

St

Y et B T AP R I - . -
PN . BN . ~ - P A
Sen e foch Py PO Q. e i PP VS SRS R LA W SV D W D WD

AR AANACAI S AL A A D SN MR pte gul SRR SAR SeE 4 -8 o aie ave




-—— - o nantctas ans o b b dh BLIE IR B N B G T
L i s Aagy - hut St Dt hed el fad Bag Sl Ar i s A th Nhl St g Lali At i S > A T B -
Al RNl P LN - .

26

SaERL L

»

R A

In Figure 8 a plot of nkYi(s) is given, for lag s-T=1.5, as a function of the

sample size n for possible values of k=1,2,3,4, It is evident that when k=1,

v -
(]

nY:(s) approaches a constant fairly quickly, supporting our belief that the rate
of convergence in (2.33) in indeed 1/n. We also conducted a mean-square fit

for k and Q(s) by minimizing

IR TIPSR

n S
2, k 2 2

J(k) = )°{n Y (s) - 0(s)} 2

n=n,

with respect to k and Q(s). Tor the range of sample sizes n=15,..., 30

(n1==15, n, = 30) we found that the best fit is

k = 1.035
and 10.118 for s-T = 1.0
2 - =
K(s) = 2.35 for s-T 1.
.848 for s-T = 2,0 .
.379 for s-T = 2.5

Interestingly, the best fit for k turned out to be independent of the 4 values
of s listed above. This result clearly supports the conjecture that the rate
ol convergence of C; (s)-—Ei(S) is 1/n.

The above slow rate of convergence can be dramatically improved if we modi-
fv the uniform sampling scheme tn i=~T(2i—ll— 1)/(n-1), i=1,..., n, by appro-

2

priatelv shifting t and t towards the end of the data interval [-T,7]
: n, 2 n,n-2
s0 as so achieve a better approximation of the derivatives X'(T) and X'(-T).

suppose, for example, we let

2T . 4
tn,Z B (n—]) - T
(2.3%
_ 2T .4
n,n-2 r- (n—l) ’
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for n>2, so that the approximation of the derivative X'(~T) by only two data ﬁi;;:

l ' - '-‘ . o

points X(tn,l) and X(tn’z) (and similarly for X'(T) by X(tn’n) and X(tn,n—l)) ii?*—

achieves a rate of convergence of l/na, We then expect the performance of the :?:?2

RGP

discrete-time predictor with such a modified uniform sampling to improve j””;;

dramatically in comparison to uniform sampling. This turns out to be the

case: In Figure 9,8; (s) is plotted as a function of the lag s-T for sample
sizes n=2,5 when thi: modified uniform sampling scheme (2.34) is used. It is
seen that with n=5, the performance is already very close to that of the con-
tinuous-time predictor (contrast it with Figure 6 for uniform sampling). This
sharp improvement for the modified uniform sampling scheme can be seen more
clearly in Figure 10, where the fractional error Y:(s) is displayed as a func-
tion of n for 3 selected values of s; it is seen that the modified sampling
scheme with n=7 outperforms the uniform sampling scheme with n=30 by a

factor of about 10. For example, for lag s-T=1.5, modified uniform sampling
with only n=7 gives a fractional error of 5.12x 10—3, whereas uniform sampling
with n=7 gives a fractional error of .109 and even when n= 30, we have a frac-
tional error of 2.37 x 10-2.

With this modified uniform sampling we expect a rate of convergence of l/na,
but no such analytical result is yet available. Due to numerical instability in
the inversion of the covariance matrix RD when modified uniform sampling (2.34)
is used with n>7, we were unable to compstationally verify this conjectured rate
of convergence.

B.3.2. Nonoptimal-Coefficients Predictors

when the nonoptimal-coefficients predictor (2.26) isused with equally-spaced samples,

2
the mean-square error ey (3) has precisely a rate of convergence equal to 1/n,
n
y \ 2
bv (2.29). Figure 11 compares e, (s) for n=2,5,10, with E?(S) of the optimal
n
continuous-time predictor. More interestinglv Figure 12 provides a comparison

ot performance between the discrete-time predictor with optimal coefficients
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and that with nonoptimal coefficients; here the fractional error is plotted
for each case as a function of the sample size n for 3 representative values
of the lag s-T. It is seen that the performance of the two predictors is
fairly close in this case with equal rate of convergence (1/n).

From (2.31) we know that by modifying the two sampling points th 2 and

. . . 4 :
tn2 28 in (2.34) we obtain a precise rate of convergence 1/n for the discrete-
,n-

time predictor with nonoptimal coefficients (2.26). The performance for finite

sample size n=2,..,., 30, is displayed in Figures 13-15. Figure 13 exhibits the
2

D (s) for n=2,5,10, and Ci(s) of the optimal continuous- .
n S
time predictor. This should be compared with Figure 11 where uniform sampling

N A

mean-square error e

is employed. Such a comparison is more clearly displaved in Figure 14 from
which the dramatic reduction in the fractional error is evident (for a fixed ‘:;ﬁ
lag) under the modified uniform sanpling scheme.

Finally one mav wish to compare the performance of the two discrete-time
predictors, with optimal coefficients and with nonoptimal coefficients, (2.26), !

both using the modified uniform sampling scheme. Such a comparison is given

in Figure 15 from which it is seen that for small sample size n<7 the pre-

dictor with optimal coefficients significantly outperforms the one with non- t:i:
optimal coefficients. This is considerably more pronounced here under a modi-

fied uniform sampling than in Figure 12 under uniform sampling. One possible

cxplanation is that the predictor with optimal coefficients does a much better E;
job in estimating the derivatives X’(tT) than the one with nonoptimal coeffi- i

cients, implicitly using all data points instead of just two points as in (2.26).
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APPENDIX

Here we derive the asymptotics of the terms on the right hand side of (2.27).

A. Approximation of Quadratic-mean Derivatives

For the mean-square error in the approximation of the quadratic-mean deriva-

tives (first line in (2.27)) we have

(1)

E(x" () - £IX@) - X(u - )]}

= 1?0 - 2rW 0 -k P w1 + Zir(0) - R(W)]
h

= -R(Z)(0)+ %[hR(z)(O)-!- —i—hza(”(oi) + o(hz)]

2

h2

32%R? ©0 + 2P 01 + o))

Zr® (00 + o(n) (A.1)

where the right and left derivative corresponds to h positive and negative re-
spectively.
For the cross correlation between the approximations of the quadratic-mean

derivatives (second line in (2.27)) we have with w=u-v#0, h>0, g>0,

X(1)

B0 ) - 2% () - X(u - 0] Hx P (v) —émv +g) - Xx(v) 1)

= -R(z)(w) —é[R(l)(w- g) -R(l)(w)] -%[-R(l) (w) +R(1)(w— h) )

+ E'lg[R(w—g) ~R(w) - R(w-h-g) +R(w-h)]

. RO

T R
i e
. . I'v .-“.

TN

P L . R
- Al - . B e L PRI AP

T e P L O [ - Ll . . L . O T VU, S
. T e L e T e T e T Te T e T . LT . T S e T e T o e T e e
PP P, P WA R Y PR AL L W ST PP W g U i il SR PP WL VU VT WA AT LT NP P ROt S R T S P R R P U P W P RO S P oy




30 S
= RP @) - L1-gr D ) + 27D () - 2% W () + 061 o
() 1,2 (3) 1,3 (4) 4 K-
- -{ ~hR* (h) +5i (@) = Zh"R™ (W) +0(h7)] i
.'-f:.'_':::
1,..(1) (2), (1, 2 2, .2 i
+E[R (wy{-g+(g+h)-h} +R (W)E{g -(g+h)“+n°} (s
. E
+ U2+ @+ 0’ - )+ KDL te - e +1) + o+ ] o
= - 2@ ) + o’ + &), (A.2) ";‘
—
With u=T, v=-T, h =T = +T, and 1 £ d e
th u=T, v=-T, - -t n,n-1’ 24 —tn,Z , and a regular sequence o e- ...'J‘
signs, it follows from the mean value theorem that K-%
1 ;n,z ydt = ?—:
n "l p(t)de = p(v )(t ,+T) T
(A.3) P
T - A
= [ p()de = p(un) (T_tn,n—l)
t
n,n-1
where -T<v <t s, t <u_ <T, and thus
n n,2 n,n-1 n
.
h: 1 1 I
i:'; ng, > o (=) ° nhn - -—p(T) (A.4)
Hence from (A.1) and (A.2) we obtain
(3) N
3 2 > - _g. R (0-) = % SRRV
% nEG_p ) 3 p(-T) 3p(-T) °
' SR
G (o4) S
2 2R 0+) _ _»p
nE(AT.n) MERYE)) ~ 3p(D (.5) ;~_'._‘~1.j1
£
; (4) 2
. R 2T)
: P E G

T I R _._..._-\ .._.,»_,\_ ....- NN .‘.‘.,. : AR R ] . e
,;1"'(1_-_. W L e S AL P A S S, e et L e T, ~‘-,‘~_';_‘.>.- : .- T R
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which establishes the first two lines in (2.28). Also when tn 2 and tn n-1 are
modified to
4 = m_ ' = - - m A
tn,2 (t ’2+T) T t n-l T-(T-t n_1) (A.6)
then
= ' = m = - ' = - m
8, tn,2+T (tn,2+T) , h T ta,n-1 (T~t ) -1
and by (A.3),
nmgn > ml' nmhn > ml s (A.7)
p (-T) p (T)
so that
nmE(AgT n) mD_
’ 3p (+T)
(A.8)

R4 o1y

2n2PEGA AL ) - - —
4p (-T)p (T)

-T,n T,n

When m=4 we obtain the first two lines in (2.30) and when m ' 4 both rates

are faster than n-a leading eventually to (2.32).
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B. Approximation of Integral

The integral approximation mean-square error can be written in the form

T ) n Skl Syl
Elf c()X(t)de-T 17 = ) / } M, j(t,T)p(t)p(T)dth
-T k,j=1 t t, ?
k i
n
g I (A.9)
kyj=1 )

where

M (6D = FOF(DRCE —T)-%f(t)[f(tj)R(t-tj)4-f(tj+l)R(t -t )]

- %f(T)[f(tk)R(T-tk)i-f(t YR(T-t. )]

k+1 b1

(A.10)

1
+ Z[f(tk)f(tj)R(tk° tj) + f(tk)f(th)R(tk- t..,)

j+l

+ f(tk+1)f(tj)R(ck+l-tj)-+f(tk+1)f(tj+1)R(tk+1-tj+1)].
and f(t) = c(t)/p(t), and where n is dropped from LI for ease of notation.
y
From (2.12) we have by the mean value theorem
) RS
== [ p(o)dt = plu )b, (A.11)
Y%

where t - u In the following we will make use of the quantities

kYT Nkt

e}
[ R - (e + 1t
'k
St L .
[ - )7 - (e DA Ip(tde,

tl-:

]
It

) M) de,

o
1]

A AARA A S Ied Bl B B bl I AR A A S a0 4 b4t A abthde A cadisal e ||

-1
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r.
r.
re
if m=1,2,3,4,5. Their asymptotics are found by Taylor expanding (fp)(t) and
v
i p(t) about e Using = to denote equality up to higher order terms in Atk,
- we find
Y
...
‘\
- F . =G At £ =0,1,2
o m,k m k or m=5 1,4,
. (A.12)
<
. N m+1] _
: Fm,k = GmAtk for m= 3,4,5,
g where
. G = = (E'p' - £"p)
- 0o 12V °P ’
3
’ G, = —=(fp' - 2£'p) (A.13)
; 1 - T2VP P), .

1
-“. G2 = - gfp’
.
D and in these expressions all functions are evaluated at some, possibly distinct,
. point in [tk’tk+l)'
: For the diagonal terms JK K in (A.9) we use the Taylor expansion of R
LA 2
; about zero,
.
2

t R(D = R(O) + 2R P (0) + %P (e
3
ﬁ where 7 is in between 0 and 7. Since R does not have a third derivative at 0,

3 o4y = gD

in fact R (0+) (0-) = n/2>0, we need to keep track of whether the

intermediate point ¢ 1is positive or negative. After considerable algebra we

find that

g = R(O)Fg + R

K,k K (0) [F

Z,RFO,k - ] + R, (A.14)
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where the first two terms are of the order Ati, by (A.12), and the third term
involves the third order derivatives of R:

t
k+1
Ry ™ 1) atatp(O)p(5R P @2~ 07 kP @ ey - e’
k

- e Epr@ee, e, -0 - P e -’

3 + R(3)

- kP e, e, -0 (£ F (e (e, DBE T

PESRAL I

The intermediate points 52 to £6 are between 0 and t-_ﬁﬁ tk+l-t,..., Atk
respectively, hence, all positive, while El is between 0 and t - 7. Thus the
integral of the first term should be done separately above and below the diagonal

of the square (t ) < (t ), while all other integrals can be evaluated

K’ S+l Kk’ Ck+1

directly on the entire square. Using mean value theorem to pull the part of

the integrand involving R(B), f and p out, and evaluating the resulting integral
we find

RE) (3)

1 1
R (pos) fpfp 75 + R (neg) fpfp(- IB)

- L
3,k 12

- R(3) (pos)fpfp%- R(3) (pos)fpfp%- R(3)(pos)fpfp4l

5

- R(3)(pos)fpfp%+ R(3)ffpp} /\tk

where f and p are evaluated at points in (tk’tk+1) and R(j) at points tending

to 0 with n whose sign is indicated. Hence R3 K is the dominant term in (A.14)

and using its expression above along with (A.11) we obtain
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T 20 _ rP @y P on |, 2P on, } 2w’ |,
o K,k 120 120 12 12 4
k -T p (t)
T .2
-T p"(t)
T 2
1 £
- o] _§££l de. (A.15)

T p (t)

For the off-diagonal terms Jk P k#j, in (A.9), we can Taylor expand R
9.
about tk— Fj# 0 as far as it is necessary, as it is infinitely dif{ferentiable

away from 0. We find that terms involving fifth and higher order derivatives

of R are of higher order in (Atk)(Atj), and after considerable algebra we have

- (1) _
Jk,j = R(t K -t )[F0 kYo, 5 .] + R (tk tj)[Fl,kFO,j FO,kFl,j]

L@ _ _

+ 2R (tk tj)[FO’sz’ji-Fz’kFo,j ZFO,kFO,j]
1 (3) _

+ = 6 (t _tj)[FB,kFO,j FO,kF3,j+3F1,kF2,j 3F2,kFl,j]

+ = 1 “)u -t )[F,  F +F, F -4F,  F -4F, F +6F, | F ]
24 j 0,k 4,3 4,k 0,j 1,k 3,3 3,k'1,] 2,k 2,j

+ higher order terms.

In fact, in view of (A.12), the terms involving F3 K and F, | are also of
’

3

3
higher order, and all remaining terms are of the order /\t(’\t1 Using (A.11)

and (A.12), (A.13), we find

n’ N A ] jj [ 5 r (t, R™ (¢~ 1) Jdea (A.16)
ki ) 2 bt m0 "
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s where R
3 ot = EvwmErm, i
’ 4
;’
= o = Sordoido - Eroltos g, ]
o AN
W, -".:"!
< o
v, = Lo o+ Erobo - o s Hrondo oo, E .
2 p p p p P p p P S
- I S URIY JENE SUNE ISR o R
B ry(e, 1) = [p(t)+(p) (t)]p(T) p(t)[p(1)+(p) (0], L
b
' £, f CL
£, (t,7) = ;(t)-};(T). ]
‘ Putting toeether (A.15) and (A.16) we have “’;3
- 2 4 T
4 2 . 0 f_ -1_ (m), _ . o
n r.(fcx-tn) 36 )2 [fo) e, R™)y < <, - (A7) s
- p t#s m=0 " T
i n
. The expression of the asymptotic constant C4=C4(s) can be simplified considera- 1
hly by integration by parts. For instance ‘"—-':}.ZE:
_ : o =
[/ raR = f dt— (t)(f + f)dTR (t - 1)=(1)
t#s -T ~-T t P
o]
T t T
o - JadouPa-oforlt vt v+ DamP e o) g
L -1 P = -T ot p
s T }
. = ad o kP on o kP e e R -l kP e B
o P p p p p
r T
PR - oo & raeas
.:- __T p p
E :-,’ , +f (z)[R( (t+l) ( T) —R( )(t-T):;(T)]dt
n
5 Uite(3) o 3 Eepy £y e T oo 1dea
= "QU’R (t ){ﬁ(t)(p) (v - (L)p(l)Hti‘.
N
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The first term is of the same form as that coming from the diagonal terms.

Using repeated integration by parts on the remaining terms we obtain finally

+e (A.18)

OO - AR | e

rh
[AS T

- P
¢, = 730/

s~

where

2 . 92 e 5200 - £ i
12°¢C = R(O)[(p) (T)+(p) (M1 2R(2T)p( T)p(T)

W omy i omEery _Eom il
+ R (2T)[p(T)p(T) p( T)p(T)] (A.19)

'V"rv-" T

+ 2D enienim -oid2en + H2m)
PP P P

i LN ' PRLEE LI < .
LY N ) . . ', e ) .

. A 1. . ’." F R R ) r
A s L G,

and f = c/p.

It should be noted that as follows from the work of Sacks and Ylvisaker

13
.
L‘
b

[4,5) the first term on the right had side of (A.18) is the asymptotic con- R
1

. - s . —“4

stant of the .regular sequence of designs using optimal coefficients. Thus -
-~

P

our estimator In of the integral is not asymptotically optimal, its asymptotic

R
ERPINY
)

constant exceeding the least possible value by the amount C determined by

3
g (A.19).
‘;_
-
=
.
v
.
‘ ,
] S
B
j \': ‘:'.
. ‘n..'\.‘ -
R "t Al
vy N
- - ."
Ve

L e e T e T A
e UL WP WP WA WL WP S W Ry PO . ca el B - e P - . .
DU I W S Y . -~ . . -~ N . . S . .

-~ - -t P WY ORI T S L A A e Tl




— T e — e - —w oy — -
ST T T T Bl e e N e T

¢a

FTOTETETE-I Y MCRACRA AT AR T ML B LR B

ere’,

38

C. Cross Correlation Between Quadratic-mean Derivative Approximation And

Integral Approximation

Putting AT,n = X(l)(T) - [X(T) - X(T-—hn)]/hn we have

t
f 1)) ? k}l (t)p(t)de er J
E[A ( cX - = X P =
.o A N K k=1 &
where
() = e RV -1 - L[R(e-T) -R(E-T+h )1}
Mk h n

n

1 ¢)) Sy L L e _
-Zf(tk){-R (t:k T) hn[R(tk T) ~ R(t, T+hn)]}

1 (1) 1
FE PR - D) 'tTn[R(tkﬂ =T) -R(ty ~T+h )1},

and f = ¢/p. As in A of Appendix, hn satisfies (A.7) withm=1 or 4 or >4 .
(1)

Since for each k, the argument of R and R in the expression of Mk never

vanishes in the interior of the interval, we can Taylor expand about tk-T R

and regrouping terms we have

.
-
.
.
e

- (2) 1 €)) 1.2 1
L J = - - + - =]
: = R - Tgh Fy o+ R - [Eh Ry o0 Fy
. ) 1.3 1,2 1
¥ R =D gzhe o Y e 1k A 2]

+ higher order terms,

N

: i.e., the coefficients of R(tk-T), R(l)(tk-T) vanish and those of R(S), etc.,
E are of higher order in Atk. Then using (A.7), (A.12) and (A.13) we obtain
!
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y n**PElA (feX - 1)1 > - —2—
" 24p (T)
where
fR(z)(t 'I‘)( (:)dt+j RO (¢ - T)[ (c)+(—) (t)]dt+f R (-t (t)dt
=T -T -T
and can be simplified by integration by parts to
£! 2 £' f 3 f
RP@E @ - P emEren + kP oatm - v nzen.
When m=1 we obtain the third line in (2.28), when m=4 we get the third line
in (2.30), and m> 4 helps lead to (2.32).
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